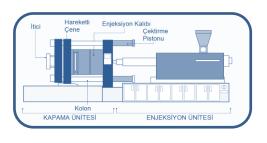
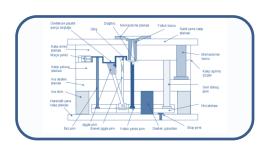
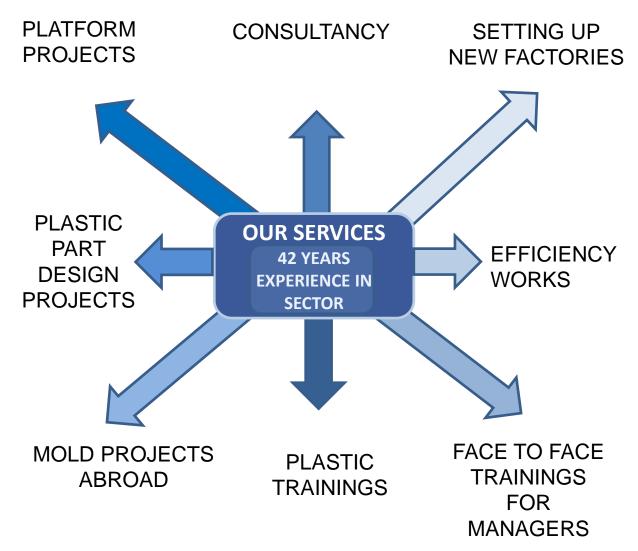
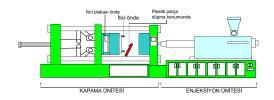
METIN BİLGİLİ TRAINING&CONSULTANCY





METIN BILGILI PLASTIC TRAINING&CONSULTANCY


42 YEARS EXPERIMENT IN PLASTIC SECTOR


OUR SERVICES

ENGLISH PLASTIC TRAININGS

- 1 INJECTION TECHNOLOGIES&TROUBLE SHOOTING
- **2 ADVANCE INJECTION TECHNOLOGIES**
- 3 MATERIAL SELECTION&EFFECTS ON THE DESIGN AND PROCESS
- **4 PART DESIGN FOR PLASTIC INJECTIONS**
- **5 PLASTIC INJECTION MOLD DESIGN**
- 6 PLASTIC PART STAMPING AND DECORATION METHODS
- 7 PERCEPTIONAL QUALITY AND QUALITY CONTROL FOR PLASTIC PARTS
- **8 MANAGEMENT FOR EFFICIENT PLASTIC FACTORY**
- 9 EXRUSION&THERMOFORMING

BASIC INJECTION TECHNOLOGIES

1 Technologies

Thermoplastic injection

Multi material injection

Multi colour injection

Insert molding

Gas injection

Water injection

In mold labelling

In mold decoration

Cascade injection

Steam injection

Mucell

2 Plastic materials

Material types

Thermolpastics and thermosets

Hierarchy of plstics

PE,PP,PMMA,POM,PA,PS,ABS details and using areas

3 Mold

Mold types

Mold equipments

4 Injection process

Plastic materials and rheology

Injection parameters

Mold,process,material,part,thermal,time,pressure,speed,quality

Clamping force calculations

Injection phase and effected parameters

Injection screw

Injection stroke

Material quantity calculation

Thermal specifications

Relation with injection and material

VPT velocity to pressure transfer

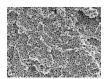
Ejection phase and effectred parameters

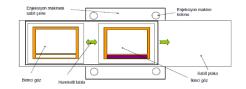
Shrinkage

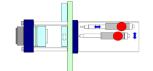
Part weight and screw diameter relation

Pressure necessity according to plastic types

Cooling system







5	Process parameters for polyprophylene
6	Process parameters for polyamide
7	Porcess parameters for polycarbonate
8	Steps for mold dissasembly
9	Steps for mold fixing
10	Putting into operation procedure for injection mold
11	Injection machines
12	Material drying
13	Colouring
14	Hot runner
15	Mold maintenance
16	Cleaning of machine barrel
17	Injection molding machine maintenance(column,barrel,screw)
18	Mold sweating
19	General process,part,mold problems
20	Specific plastic injected part quality problems
	Flash
	Welding line
	Sink marks
	Gloss
	Weight fluctiation
	Short shot
	Warping
	Breaking
	Flow lines
	Mold can not be opened
	Diesel effect
	Matte rounds around of gate areas
	Peeling
	Colour changing
	Ejection problems
	Roping
	Black spects
	Bubble
	Dimensional problems
	Matte problems
	Texture problems
	Fingering effects on surface
	Cushionning problems
	Uncommon smell
	Long cycle time

ADVANCED INJECTION MOLDING

1 Scientific injection

Scientific injection with engineering approach

Scientific injection molder

Scientific problem solving methodologies

Quesions to define problem

Systematic approach to peroblems

Documentation to solve problems

Work on samples with problems

Correction od datas

Equipments for scientific approach

Examining scientific problems

Process window

Process variables and relations in between

Problem solving methodologies

Problems in the production facilities.

2 Decoupled injection

Scientific approach to filling, compression, holding phases

VPT point examining

Clamping plate stretching identification on VPT point

6 Sigma approach to problems

3 INDUSTRY 4.0

IIOT and scientific injection applications

MES applications

EUROMAP 63,77

4 How cycle time reduced?

Dry cycle

Auxiliary equipments

Plastic material based cycle time reduction

Part thickness related cycle time reduction

Ejection based cycle time reduction

Cooling based cycle time reduction

Mold based cycle time reduction

Cycle time reduction with additive manufacturing

5 Cost reduction

Part design based cost reduction

Mold design based cost reduction

Quality based cost reduction

Production based cost reduction

6 How to purchase right and effective injection molding machine?

7	Process parameters adjustment with engineering approach for PC
8	Material drying
	Dessicant dryer
	Dew point
	Humidity leves according to plasitc materials
9	Colouring
	Carrier
	Pigment
	Dozing
10	Advanced Process Methodologies
	Multi injection production systems
	GIT,WIT injection applications and design criterias
	Heat&Cool
	H&C+GIT
	H&C+ EGIT
	E-Mold
	Heating with high pressure water
	EMCO
	Heating with Infrared
	MUCELL
	Insert molding
	Overmolding
	In mold labelling
	Silicon injection
	Joinmelt (In mold assemblying)
	IBM
	BMC
	IMC
	CLEARMELT
	SKINMELT
	REVERSE CUBE
	EXJECTION
	Touchskin
	Scientific approach to problems with 5M1P methodology(with samples)

CHOOSING OF PLASTIC MATERIAL&EFFECT ON DESIGNAND PROCESS

1	Born of plastic
2	Plastic materials&Production methologies
3	Plastic types
4	Hierarchy of thermoplastic type:
5	Thermost plastics
6	PU
7	EPS
8	Different application
9	Expectatios from plastics
10	Things for waiting of plastics
11	Material types and product requirement
12	Specifications of general plastic types
13	Anistropy-Glass Transition
14	Modulus of elasticity-Yield point-Elongation at break-Residual stress-Tensile strenght
15	Creep-Creep rupture-Creep modulus
16	Viscosity-Shear rate-Coefficent thermal expansion-Abbe value
	Design expectations from plastic material
17	Long&short time under pressure
18	Under load axial or different direction.
19	Water absorbsion ratio
20	Impact specifications unde hot and cold conditions.
21	Breaking specifications under pressure.
22	Wear specifications
23	Colour changing against heat.
24	Burning behaviours
25	UV Resistance
26	Chemical resistance
27	Migration
28	Ultrasonic weldability
29	Sticking specification.
30	Nucleating agent
31	Flow path factor
32	Clamping force according to pla
33	Long and short time temperature resistance.
34	Dimensional changing as tempe
35	Electric resistance.

36	Dimensional shrinkage
37	Contact with foods
38	Coating specification
39	Gloss specifications
40	Importancy of part thickness
41	Campus
42	Composit materials for metal replacement
43	Termoplastik elastomerler ve sorunları.
	Katkı Maddeleri
44	Antioxidant-Light stabiliser-Lubricants
45	Antifogging-Antistatic
45	Flame retardants
46	Blowing agents
47	Colorant
48	Filler&Reinforcement
49	Nucleating agent
50	Antiblocking
51	Antimikrobik ajan
53	Bio plastics
54	Is the plastic materials dangereous?
55	Recycling
56	Simple tests to know plastic types with applications
	Material choosing according to process
57	Gas injection
58	Thinwall
	H&C
60	Double injection
61	Ultrasonic welding
62	Laser welding
	Tests to apply plastics
63	MFI-MFR-MVR-VİSCOSITY
64	Izod,charpy impact-DTUL-Vicat-Falling dart
	Flexural strenght
_	UL Flammability - Glow wire
67	Pencil hardness
68	Arc resistance-Dielectric strenght-Volumetric strenght-Surface resistivity-Hot wire ignition
69	Bend strip

PLASTIC PART DESIGN

1	Process of design steps
2	Enter to design, priorexamination, basic design criterias.
3	General expectations from design. Part function, material effects.
4	Benchmark
5	Production process choosing.
6	Hidden cost factors
7	20 Steps for good quality plastic part design.
	Informations on the part drawing.
	Tolerance
	Gloss
	Effects of part design on the Mold design (Mold type,sttel quality,etc.)
8	Design criterias.
	Draft angles
	Gate position and type
	Shrinkage factors
	Nominal thickness,thickness differences,ribs.
	Parting line
	Slides, jiggles.
	Surface quality standarts
	Radius,hole design.
	Gate design(side,tunnel,banana, etc.)
9	Assembly technics
	(Screw,snap fitting,sticking,ultrasonic,laser)
	DFMEA - PFMEA
11	Part design and effects on process, production.
	Yearly production number, using for one product number.
	Exsisting similar part comparing,post processes,assembly.
12	Part design effect on mold design and machine selection.
	Tie bar distance,tonaj,nozzle,ejector,jiggle,
	Design for gas injection.
	Design for glass encapsulating
	Design for H&C
16	Mold acceptance tests and effects on part design
17	Design effects on assembly
	Design effects on packaging.
	Informations in project book
	60 Proven design examination
	Design examination of company existing part design samples.
22	Applications for informations on the part drawing.

PLASTİK PARÇA KALIP TASARIM EĞİTİMİ

- 1 Mold design process steps
- 2 Quality plastic product steps
- 3 Enter to design, preliminary design pre examination.
- 4 Design examination at 8 steps.
- 5 Hidden cost factors
- 6 Mold life and related criterias.
- 7 Mold design criterias.

Plastic material and effects on mold design sriterias.

Injection machine and effects on mold design criterias.

Plastic part tolerances and relation with shrinkage ratio.

Mold dimension desicion according to shrinkage ratio.

Mold insertr and dimensions to the edge of the mold.

Side wall bending.

Ejector plate dimensions.

Safe dimensions for mold insert.

Mold parting line.

Support blocks.

Sprue bushing.

Centering pin.

Jiggle

Slide cooling.

Gate location.

Eye bolts.

Insulation plate.

Mold running efficiency.

Gate number

Plate thickness.

Air gaps

- 8 Mold process steps
- 9 Production numbers.
- 10 Moldability.
- 11 Part productionnumbers and effects on part design.
- 12 Machine chosing according to part design.
- 13 Tolerance expectations.
- 14 Mold flof analysis sample examination

Mold types(Standart,2 plate,3 plate,stripper plate,with slide,screw molds,collapsible core,stack,rack&pinion,gas injection,water injection,e-mold,DTI,E-mold,DTI,3 D

- 15 Weldless, tandem, clearmelt, IBM, ICM, Cube, family molds.)
- 16 Surface definition

Polishing standarts, SPI-ISO, stone, sandpaper, diamond paste, choosing, polishing steps, polishing

- 17 defects and solutions.
- 18 Steel choosing.
- 19 Gate types, cold and hot runners, gate location and effects on pressure and design.
- 20 (Yolluk giriş, yan giriş, tünel yolluk, muz yolluk, yüksük, disk, 3 plakalı yolluk sistemi,

- 21 Sprue puller types.
- 22 Hot runner types, manifold choosing.
- 23 Runner system balance, runner section, choosing and effect on efficiency.
- 24 Cold slug well.
- 25 Cooling system, cooling time calculations, reynold number, scientific cooling, conformal cooling.
- 26 Cooling analysis examination.
- 27 Ejection system.
- 28 In mold air evacuation system.
- 29 Mold cost analysis.
- 30 Progress report
- 31 Mold acceptance test.
- 32 Mold ordering process steps.

Part drawing informations.

Mold quotation request form preparing.

Mold maker choosing

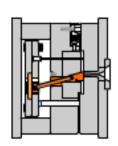
Evaluation of mold quotation.

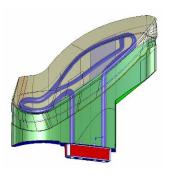
Avaliable mold maker choosing according to qualifying.

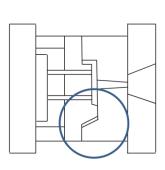
Contract.

Preliminary design examination.

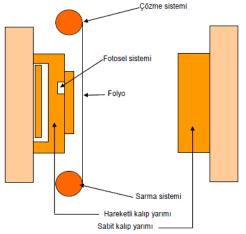
Final drawing examination


First shot

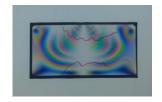

Mold acceptance works.


Mold transportation.

- 33 Mold design samples and problem solutions.
- 34 Mold maintenance.
- 35 Texture
- 36 Company mold drawings examination, examation on parts.


PLASTIC PART STAMPING AND DECORATION METHODS

- 1 General view to decoration methods.
- 2 Expectations from the decoration methods
- 3 Criterias for decoration.
- 4 Hidden cost factors
- 5 Decoration methods and abbreviations.
- 6 Painting and stamping methods.
- 7 Silk printing.
- 8 Pad printing.
- 9 Printing with foil.
- 10 Foil types.
- 11 Foil production technics.
- 12 Hot stamping Up&Down.
- 13 Hot stamping Rolling.
- 14 3 D Hot Stamping.
- 15 Silicon molds.
- 16 2 D IMD
- 17 2 D design principles.
- 18 3 D IMD.
- 19 3 D IMD quality tests.
- 20 Cubic printing.
- 21 Laser Printing
- 22 Polylic.
- 23 Brand protection.
- 24 Metal IMD.
- 25 Quality control methods for decoration.
- 26 Logos.
- 27 Examinatios on samples.



PERCEPTIONAL QUALITY AND QUALITY CONTROL FOR PLASTIC PARTS

- 1 Description for perceptional quality and quality.
- 2 Customer perception.
- 3 Perceptional quality improving works.

Related with Process

Related with Mold

Related with Design

Related with Decoration methods

Related with Raw material

Related with Quality control

4 Sufficiency for quality parts

Sufficiency for process

Sufficiency for machine

Sufficiency for mold construction

Sufficiency for quality control equipments

Sufficiency for post processes

Sufficiency for operator

Sufficiency for knowledge

- 5 Quality steps for quality parts
- 6 Six Sigma approach to quality
- 7 Tolerance and effects on quality
- 8 Geometrical tolerances
- 9 Test methods for quality control

Dimensional-chemical-mechanic-density-fusion-burning-form-humidity internal stresses-perceptional-visual-geometrical-thermal-morfological.

Recognition:Floating-burning-sniffing-breaking-section-stracthing-chemical

Thermal tests:FTIR-DMA-DSC-TGA-DTA-SEM-DTUL-ETÜV-MVR-MFI-BP TMA-MSDC

Electrical tests:SR-IP-HMT-DS-CTI-DC-LOI-IT-AR-VR

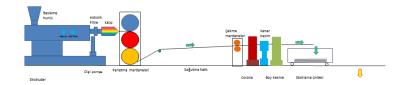

Mechanic tests:Pull-fatigue-impact-surface hardness-hardnesss-wear

Visual and optic tests:Ra-haze-internal stresses-colour-gloss

Burning tests:HB.V-2.V-1.V-0.5VA.5VB-GLOW WIRE.

Tests for decoration methods:Adhesive-humiditywearing-hardness-ball-chemical Other tests:ESCR-water absobstion-sun test-bend strip-FDI-ash-viscosity-life-3 D-laser.

MANAGEMENT FOR EFFICIENT PLASTIC FACTORY


- 1 Vision, mission, main values.
- 2 Organisation
- 3 Targets
- 4 Performance management
- 5 Presentations
- 6 Budget
- 7 Safety
- 8 Staff
- 9 Inventory for machines, lay-out, infrastructure.
- 10 Costs
- 11 Inventory for hot runners
- 12 Scraps
- 13 Projects
- **14 TPM**
- 15 Meetings
- 16 Satisfaction
- 17 Shifts, Overworks
- 18 Internal trainings
- 19 External trainings
- 20 Census, stock control
- 21 Long term plans
- 22 Pocess audits
- 23 Forms
- 24 Production plannings
- 25 Maintenance
- 26 Quality
- 27 Efficiency
- 28 Raw material stock level
- 29 Internal audits
- 30 Subsupplier audits.

EXRUSION&THERMOFORMING

Extrusion

- 1 Plastic process methods
- 2 Extrusion process methods

Sheet extrusion Corrugated pipes extrusion

Profile extrusion Cable extrusion

Multicolor extrusion Blown film extrusion
Multimaterial extrusion Blown part extrusion

- 3 Materil selection for extrusion process
- 4 Extrusion dies
- 5 Sheet extrusion and details of stations on the line
- 6 Troubleshooting for sheet extrusion

Black spots Orange effect
Die lines Orientation
Gloss Pollution

Dimensional changes Lumps

Lines Transversal lines
Colour Irregular sides
Pit Curling

- 7 Raw material
- 8 6 steps for quality sheet
- 9 Sheet test methods

Thermoforming

- 1 Thermoforming process
- 2 Thermoforming machines

Single stat

Two stations

Three stations

Four stations

In-line

Twin sheet

- 3 Heating syatems
- 4 Positive presure
- 5 Trouble shooting

EPS PROCESS

- 1 Molding types
- 2 Material choosing
- 3 Process steps
- 4 Pre expansion.
- 5 Aging
- 6 Block production.
- 7 Mold design
- 8 EPS material, chemical strenght, flame retardancy, coloring.
- 9 EPS part design criterias.
- 10 Cushion calculations.
- 11 EPS heat conductivity
- 12 EPS production process parameters.
- 13 Fusion.
- 14 Problem solvings.
- 15 Safety
- 16 EPS quality tests

PAINTING

- 1 Hand panting
- 2 Automated painting
- 3 Silver paint
- 4 Packaging.
- 5 Transport

COMPOSITE TECHNOLOGIES

- 1 Composite production types.
 - 2 Composite materials.
 - 3 Composite materials and advantages, disa
- 4 Hand laying.
- 5 Spraying.
- 6 RTM
- 7 HP-RTM
- 8 T-RTM
- 9 C-RTM

BLOW MOLDING
Blow molding molds
Blow molding types(extrusion,injection)
Battery type.
Exstusion blow.
Plastic materials using on blow molding process
Regring effects on process.
Continious and discontinious extrusion blow molding
Divergent and convergent mold head.
Extrusion blow molding problem solutions.
Thickness differences.
Wrinkle
Irregular sag on parison
Transversal rings
Hole on parison.
Pinch off problems
Parison elongation.
Elongation at neck section.
Ovality at neck section. Boyun kısmında ovallik
Closing at neck section.
Mold related part defects.
Mold related volumetric shrinkage.
Defects on screw section.
Visibility problems.
Wavy effects on surface.
Swelling sections on the wall. Duvarda şişen kısımlar
Cold zones.
String effects
Weak welding at mold opening line

Metin Bilgili

Metin Bilgili was borned in Eskişehir on 1957 city located center of the Turkey. Primary School and Technical High School education was in Eskişehir. He has a bursary from World Bank in 1997 for Technical Education and he was in Manchester Polytechnic about Plastic Technology in Dalton Faculty also in Wigan Tech for CNC-CAD education.

He has worked as a trainee in ,Mazak,Deckel,Leyland and some mold makers in Manchester during his education period.

He has started to work in Arçelik House Hold Appliance Factory as a Process Engineer in 1998 than worked as a Team Leader for Plastic Factory in Refrigerator Plant, than moved to the TV Plant of Arçelik as a Production Manager of Plastic, painting, EPS production divisions, and Technical Leader in the Production Technologies Directoriate division.

He is married and has two sun's 32 and 26 years old.and also has grandsun 8 years old.

Certificates

Six sigma 'Black Belt'
TPM
Total Quality Management
Time Management
Incoe Molding Systems
Analysis for problem and desicion
Management according to targets
Management Skills Development Programme
Grid for managers
Finance for managers

Memeberships

PAGEV Society of Plastic Engineers

Speechs

PAGEV Plastic Industry Congress 2007 "New injection technologies"

Yalova University "Life without plastic" 2008

ODTÜ "Bussiness Life" 2008

Mold exibition conference "Whitegoods sector" 2008

Engel opening ceremony 2009

Yalova University 'Polimer Seminar''2011

Sakarya University "Change is future" 2011

Yalova Üniversity "Polimer Days" 2012

PAGEV 'Prosess Seminar" 2014

Yıldız Teknik University "National Plastic Technologies Symposium" 2015

PAGEV Plastic Congress "Electrical housware and plastic in consumer electronics" 2015

Published Writings in Technical Magazines

PAGEV Plastic Magazines

Troubleshootings and solving methods in injection sector

Choosing of the plastic injection machine.

Plastic production and finishing methods

Analysis for Turkish Injection Molders

Analysis for Turkish Plastic Part Producers

Process for plastic sector and design

Today and future for plastic production Technologies.

Using the words in right way and using the right words in plastic sector.

Plastic Dictionary

We are plastic producers Magazine

Systemathic approach to quality problems in plastic injection process.

Plastic Turkey Magazine

Last injection, mold and plastic material Technologies.

Projects

Efficiency projects

Quality improvement projects

TPM projects

Six Sigma projects

Scrap ratio decreasing projects for injection.extrusion and thermoforming

Machine investments

Mold investments

Establishing new factory

Platform product projects

ARÇELİK R&D PRIZE CER.

DESCEN FOR A COM THE CONTROL OF TH

ARÇELİK

ARÇELİK R&D TRAINING

ARÇELİK R&D TRAINING

ARÇELİK R&D LAB.TR.

ECOPLAS TRAINING

ECOPLAS SERTIFICATE CEREMONY

SEMINAR-CONGRESS-SYMPOSIUM-TRINAING WORKS

www.metinbilgili.com | metin@metinbilgili.com | 0532 4381877

Sazova Mahallesi Çayırkent Sokak No 24 /26150 Tepebaşı Eskişehir

TOFAŞ TOFAŞ APP.TRAINING.

TOFAŞ TRAINING

DURDEN

LUX PLS EĞİTİM

TITIZ PLASTIC

BSH AR-GE

BUSSINESS CHANNEL

TOFAŞ APPLICATION TR.

TOFAŞ PHOTO.

ILERI GROUP GAS INJ.

5 S WORKS

SEMINAR-CONGRESS-SYMPOSIUM-TRINAING WORKS

PAGEV CONGRESS

PAGEV PLAKET

DORUK OT. SPEECH

TEMA SPEECH

SEMINAR-CONGRESS-SYMPOSIUM-TRINAING WORKS

AKSEL VE LISTEL JANUARY

OUR PLASTEURASIA STAND

INJ.PROCESS TRAINING

INDUSTRY 4.0 FAIR

DURDEN QUALITY TR.

APPLICATION TRAINING

SEMINAR-CONGRESS-SYMPOSIUM-TRINAING WORKS

WIN FAIR PANEL

GATES TRAINING

CHANNEL 26 RECYCLING

WIN FAIR SYMPOSIUM

ÇEŞME PPS TRAINING

BUSSINESS CHANNEL PLASTIC WORLD

B/S/H/

OUR REFERANCES

OUR REFERANCES

OUR REFERANCES